
Benchmarking Generative Models on Computational
Thinking Tests in Elementary Visual Programming

Victor-Alexandru Pădurean, Adish Singla
Max Planck Institute for Software Systems, Germany

Motivation and Overview
• Generative models excel in advanced programming benchmarks but

struggle with elementary visual programming tasks for school students.
• We introduce a benchmark grounded in visual programming to evaluate

computational thinking and problem-solving skills in generative models.
• We developed a large-scale synthetic data generation pipeline to create

tasks and explanations for model fine-tuning.
• Our fine-tuned model, LLAMACT, achieves state-of-the-art performance,

matching GPT-4o, but still lags behind elementary school students.

CT-TEST

ACE[01-07]

ACE[08-14]

ACE[15-21]

HOC

GRADE7top25

GRADEALL

GPT4Ovis+text

LLAMA3-8B-INSTRUCT

LLAMACT:HOC+MCQ+AUGexp

Figure 1: Performance of various models compared to school students.

Computational Thinking Tests
• Our benchmark is designed to evaluate diverse computational thinking

skills and includes three representative tests: HOC, ACE, and CT-TEST.

HOC-16. Write a solution code in the Workspace that navigates the
avatar to the goal. You can only use blocks from the Store for writing
code.

a b c d e f g h
1

2

3

4

5

6

7

8

Store:

Workspace (Max blocks allowed: 5)

ACE-21. You are given a code and an incomplete grid. You can add
additional wall cells to the grid by converting any of the free cells into
wall cells. What is the smallest number of additional wall cells you
must add such that the grid is solved by the code?

a b c d e f g h
1

2

3

4

5

6

7

8

OPTION A 1

OPTION B 2

OPTION C 7

OPTION D 8

Figure 2: Examples of tasks from the benchmark.

Our Synthetic Data Generation Pipeline
• Synthetic data includes tasks for solution synthesis, multi-choice questions,

and fine-grained skills (basics, tracing, grid synthesis).
• We use symbolic information from code execution to obtain explanations for

each answer, enhancing the fine-tuning process.
• We generate over 100, 000 tasks to fine-tune LLAMA3-8B-INSTRUCT,

resulting in LLAMACT. 

Grid synthesis Tracing Basics

MCQ Solution

synthesis

Place

walls

Place

avatar

Place

goal

Place

avatar

+goal

Design

all

Sequence

trace

Code

trace

Sense

Act LoA

LoG

C A E

Figure 3: Task distribution across categories in synthetic dataset.

Experimental Results
Technique HOC ACE CT-TEST Overall
RANDOM 0.0 25.0 25.0 16.7

CODELLAMA-7B-INSTRUCT 0.0 (0.0) 14.3 (0.0) 29.2 (0.0) 14.3 (0.0)
LLAVA1.5-7B 0.0 (0.0) 28.6 (0.0) 20.8 (0.0) 16.7 (0.0)
LLAMA3-8B-INSTRUCT 0.0 (0.0) 34.9 (2.0) 34.7 (5.0) 22.9 (1.3)

GPT4Ovis 20.0 (0.0) 38.1 (3.0) 52.8 (3.0) 36.9 (1.6)
GPT4Otext 30.0 (0.0) 61.9 (3.0) 59.7 (3.0) 50.7 (1.7)
GPT4Ovis+text 30.0 (0.0) 61.9 (0.0) 66.7 (0.0) 53.0 (0.0)

LLAMACT:HOC+MCQ 11.7 (4.0) 44.4 (5.0) 33.3 (5.0) 29.8 (1.2)
LLAMACT:HOC+MCQexp 40.0 (9.0) 43.5 (3.0) 36.1 (2.0) 40.0 (3.6)
LLAMACT:HOC+MCQ+AUGexp 50.0 (4.0) 57.8 (1.0) 51.4 (3.0) 53.0 (1.7)

GRADEALL 74.1 50.9 58.5 61.2
GRADE7top25 99.8 84.0 71.4 85.1

0 20 40 60 80 100
ACE score

0

20

40

60

80

100

H
O

C
sc

or
e

GRADE3

GRADE4

GRADE5

GRADE6 GRADE7

GRADE7top25

GRADEALL

GPT4Ovis+text

LLAMA3-8B-INSTRUCT

LLAMACT:HOC+MCQ+AUGexp

Figure 4: Performance of models on benchmark and comparison with students.

Conclusions
• Substantial performance gains by leveraging fine-grained

tasks along with symbolic explanations.

• Models still face challenges in combining spatial, logical, and
programming skills to solve the tests.

• Further work required to close the gap with school students.


